Establishment of immortalized Schwann cells derived from rat embryo dorsal root ganglia

نویسندگان

  • HUAJUN JIANG
  • WEI QU
  • FENG HAN
  • DAZHUANG LIU
  • WEIGUO ZHANG
چکیده

Schwann cells (SCs) play an important role in the development, function and regeneration of peripheral nerves. They can enhance both peripheral and central nerve regeneration by providing a supportive environment for neurite outgrowth through the release of neurotrophic factors. However, use of primary SCs for in vitro models is limited because these cells are difficult to prepare and maintain in high yield and purity under common cell culture conditions. Human telomerase reverse transcriptase (hTERT) expression induces immortalization of various cell types without substantial alterations of their phenotypes. Therefore, in this study we transfected SCs with hTERT to establish a reliable cell source and observed the effect of hTERT on SCs. In order to accomplish this, SCs were isolated from rat embryo dorsal root ganglions, transfected with hTERT at early passage (passage 3). SCs passage 4, 8, 12 and 30 after transfection (hTERT-SCs) were used for immunocytochemistry, RT-PCR and western blotting. Results showed that all the early (passage 4) and late (passage 30) passage hTERT-SCs expressed hTERT mRNA and gained full telomerase activity. The transfection did not alter the mRNA expression of senescence-associated genes, such as p53 and p16. The expression of BDNF (brain-derived neurotrophic factor) was significantly decreased as cell passage increased, compared to the untransfected control. On the other hand, the expression of NGF (nerve growth factor ) was elevated at early passages (passages 4 and 8) and decreased at late passages (12 and 30). These data indicate that the use of specific immortalization techniques can establish SC lines that retain characteristics of typical primary SCs, and different mechanisms responsible for regulating NGF and BDNF expression. This is the first report regarding the immortalization of SCs derived from rat embryo dorsal root ganglions. These cells are useful in studies investigating the cellular mechanisms and regenerative processes of SCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Schwann cell type V collagen inhibits axonal outgrowth and promotes Schwann cell migration via distinct adhesive activities of the collagen and noncollagen domains.

Previously, we reported the cloning of alpha4 type V collagen, a novel member of the collagen type V gene family that is expressed by Schwann cells in developing peripheral nerves (Chernousov et al., 2000). The present study was performed to investigate the effects of this collagen on the adhesion and migration of premyelinating Schwann cells and neurite outgrowth from embryonic dorsal root gan...

متن کامل

Dorsal root ganglion-derived Schwann cells combined with poly(lactic-co-glycolic acid)/chitosan conduits for the repair of sciatic nerve defects in rats

Schwann cells, nerve regeneration promoters in peripheral nerve tissue engineering, can be used to repair both the peripheral and central nervous systems. However, isolation and purification of Schwann cells are complicated by contamination with fibroblasts. Current reported measures are mainly limited by either high cost or complicated procedures with low cell yields or purity. In this study, ...

متن کامل

Schwann cell apoptosis during normal development and after axonal degeneration induced by neurotoxins in the chick embryo.

In the present work, we show that chick embryo Schwann cells die by apoptosis both during normal development and after axonal degeneration induced by neurotoxin treatment. Schwann cell apoptosis during development takes place during a period roughly coincidental with normally occurring motoneuron death. Administration of NMDA to chick embryos on embryonic day 7 induces extensive excitotoxic mot...

متن کامل

p75 is important for axon growth and schwann cell migration during development.

Mice lacking the low-affinity neurotrophin receptor p75 have multiple peripheral neural deficits. Here we examined the developmental nature of these deficiencies. Peripheral axons in p75 -/- embryos were severely stunted and poorly arborized from embryonic day 11.5 (E11.5) to E14.5. In vitro, neurite outgrowth from the dorsal root ganglia was significantly decreased in the p75 -/- embryos at E1...

متن کامل

[Immortalized adult rodent Schwann cells as useful tools for the study of peripheral nerve regeneration].

We have established spontaneously immortalized Schwann cell lines from adult ICR mice [IMS32] and Fischer344 rats [IFRS1]. IMS32 cells display distinct Schwann cell phenotypes such as a spindle-shaped morphology and the expression of glial cell markers (e.g. S100, glial fibrillary acidic protein (GFAP), p75 low-affinity neurotrophin receptor (p75(NTR))) and neurotrophic factors. In addition, co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2012